AWD: The Impreza WRX STI uses Driver Controlled Center Differential (DCCD), the most performance-directed type of Symmetrical AWD. A limited-slip, planetary gear-type center differential provides a performanceoriented 35:65 front/rear power split.
AWD: The Impreza WRX STI uses Driver Controlled Center Differential (DCCD), the most performance-directed type of Symmetrical AWD. A limited-slip, planetary gear-type center differential provides a performanceoriented 35:65 front/rear power split.
The mechanical LSD mechanism is advantageous in that it has good response of the LSD differential limiting force to the engine driving force and has direct vehicle operational stability allowing the driver to easily grasp changes in the vehicle behavior. This post discusses these advantages in comparison with conventional DCCD system.
The Driver’s Control Center Differential system is system that appropriately controls the differential limiting force of center differential LSD depending on running conditions of a vehicle. The DCCD system evolved provides controls that follow operations of the driver, while conventional DCCD system provides those based on conditions of the vehicle.
The system consists of a center differential of planetary gear type provided with LSD function, a steering angle sensor, a yaw rate sensor, a lateral G sensor, a DCCD control module and other components.
Hybrid LSD mechanism using conventional electromagnetic clutch LSD mechanism added with torque-sensitive mechanical LSD mechanism allows approximate coincidence between the vehicle acceleration/deceleration and LSD clutch differential limiting timings, resulting in linear LSD characteristics acquired through driver’s accelerator operation. Thus, the driver can more freely control the vehicle by easily grasping behavior of the vehicle.
In addition, the steering angle sensor let the DCCD control module know the driver’s intension of turning. In combination with the yaw rate and lateral G sensors, it adjusts the electromagnetic clutch LSD differential limiting force based on the running path imaged by the driver and the actual behavior of the vehicle. Thus, cornering in better accordance with the driver’s image is enabled, preventing occurrence of understeer and oversteer.
For balancing between the vehicle turning performance and traction during turning in a high order, the center differential driving torque is set to have distribution ratio 41:59.
Manual mode switch/DCCD control dial
In manual mode, the DCCD control can be used to adjust the differential limiting force of the electromagnetic clutch LSD mechanism in the range from free to lock. Current settings of the control dial are displayed on the indicator in the meter.
The 2008 Subaru Impreza WRX STI has a heritage of power and control. Previous models have been the foundations for countless racing victories and championships. The new WRX STI promises the same with it’s 305- horsepower, turbocharged, intercooled Boxer engine and a six-speed manual transmission.
Power and control incorporate enhanced technology. As suggested by new switchgear on the dashboard and center console and my markings within the instrument cluster’s center-mounted tachometer, a driver has some things to learn before wringing out the most from the car.
Today’s electronics now allow the driver to tinker with engine response characteristics, the manner in which All-Wheel-Drive system fights for traction, and the degree to which braking and engine management help maintain vehicle stability. These capabilities are made possible by standard Vehicle Dynamics Control (VDC), Driver Controlled Center Differential (DCCD), and Subaru Intelligent Drive (SI-Drive).
Prior to the Legacy RS turbo, Subaru had never enjoyed the experience of distributing a genuine performance car. Of course, there had been the 4WD turbo RX and Vortex, but neither could crack 10 seconds for the 0-100km/h sprint – although they were very reliable. The RS was the gun version of the first Legacy series released in 1988 and discontinued in 1994. The RS (Rally Sport) model was aimed squarely at world rallying, with many of its components and concepts carried over to the dominating Impreza WRX.
The center Viscous LSD on the MT models initially starts out with a 50/50 torque split, front and rear, and will up the ratio towards the end with more traction. The manufacturer doesn’t give a final figure, so the max split is either 65/35, or could even venture as high as 95/5, since the A/T model has a different system that is marketed at a 65/35 maximum split. A higher ratio would explain some of the handling characteristics at the limit. The rear differential is also a Viscous LSD model.
The BC/BF is unique in having an Air – Water intercooler with a front mounted radiator for optimal cooling. The bonnet scoop only provides cooling to the turbo. While later model legacy’s have all used air to air intercoolers.
In June 1995, to celebrate their winning of both the manufacturers and drivers World Rally Championship titles, Subaru in the UK released a limited edition run of two hundred cars (numbered 1 to 201 – no number 13!) prepared by Prodrive going by the name of the Series McRae. The main improvements over the standard model are:
Special mica blue paintwork
6.5 x 16 inch eight spoke gold Speedline Safari alloy wheels
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.