All posts by Subaru Idiot

Subaru Turbocharger Explained Part 1

Subaru Turbocharger Explained:

Turbochargers are fairly simple in concept, but adapting the system to modern vehicles can be quite complex. This primer for those new to servicing turbos and review for veterans lays out the function and operation of turbocharging in Subaru vehicles.

Subaru Turbocharger: Starting with 2004 models, the WRX STi incorporates a
water spray system to help cool the intercooler, thereby
further cooling the intake air.

The return of turbocharging in the 2002 Impreza WRX marked an absence of nearly a decade for Subaru vehicles. While the new generation has been around for half a decade, not everyone understands the function and operation of Subaru turbocharging systems.

Naturally, everyone knows these blowers are designed to get the maximum power out of engines by packing more air and fuel into the cylinders to get the biggest bang possible. Just how that is accomplished, however, may be a bit of a mystery to you. Here’s a primer on turbocharging and how it applies to Subaru vehicles.

Subaru Turbocharger Explained:

A Brief History of Turbochargers

Turbochargers were originally invented to increase the volume of air pushed into the cylinders of internal combustion engines, and, along with increased fuel, raise the level of energy produced by the combustion process

Historical references indicate that Swiss engineer Alfred J. Buchi adapted the turbines from steam engines to diesel engines as a method to improve air induction, and, therefore, smoother operation in internal combustion engines. In 1905, Buchi’s idea of powering the forced air induction by exhaust flow was granted a patent. Good idea or not, the fairly crude engines of the day could not sustain even or adequate boost pressures. Buchi worked another ten years before he could produce a working model of a turbocharged diesel engine. By that time, other companies had also produced turbocharging systems

The massive building boom of internal combustion engines to supply ships, trucks and airplanes for World War I saw technologies take a giant leap forward. The first turbocharged diesel engines for ships and locomotives appeared around 1920. Shortly thereafter, European car manufacturers began incorporating them into factory race cars and a few sporty luxury models.

The next milestone for turbocharging came with the military build-up for World War II, when turbo systems were fitted to fighter planes and bombers to allow them to fly at higher altitudes where the thinner air could be compacted into the engines to provide sufficient combustion. However, direct-driven superchargers quickly proved more reliable, efficient and more easily controlled, leaving turbochargers by the wayside.

It wasn’t until the mid-1950s when turbochargers started appearing on diesel trucks that modern turbos began to make a dent in the automotive market. Today, the vast majority of truck engines are turbodiesels.

When turbocharged vehicles began to dominate the international racing scene in the 1960s, car manufacturers began to use them in sporty models to appeal to performance-oriented drivers. By the 1980s, turbochargers for cars were a bona fide success, particularly in Subaru vehicles, due to improved metallurgy, intercooling and efficient boost controls.

The main components of a Subaru turbocharger system are a water-cooled turbocharger, an air-cooled intercooler, a wastegate control solenoid valve, sensors and a controller. Let’s review the individual components and the role they play in the system.

Coolant is critical to your Subaru

Coolant is Critical to your Subaru:

The heart of any vehicle is the engine. It’s what makes it go. Anything that jeopardizes the operation of the engine can have disastrous effects and result in extensive repairs. If the engine is the heart of the vehicle, then surely the cooling system is the “circulatory system” that keeps the engine operating at optimum temperatures. If it doesn’t, bad things are going to happen.

Subaru engines are modern masterpieces of technology and precision. Manufactured of multi-alloy metals and exotic materials, these engines contain more components, weigh less, produce more power and torque and are more durable than the old iron engines of 40 years ago. However, even these high-tech engines can be damaged or destroyed by excessively high internal temperatures.

Though more energy efficient than ever before, the combustion of fuel and air in the cylinders that produces the power that propels the vehicle still creates an enormous amount of waste heat. This is carried away from the cylinders either by venting it out through the exhaust system or via the cooling system. If either of these systems fail to keep the engine at normal operating temperatures, an overheating condition occurs. Of the two, the cooling system is most vulnerable.

Coolant is Critical to your Subaru: Always use Subaru oem coolant in your Subaru car.

The cooling system can easily be contaminated or compromised by anyone putting the wrong products into the radiator or reservoir. Often, Subaru owners or service facilities that are not aware of the specific needs of the vehicle will put incorrect chemicals into the system. In fact, according to figures published by the U. S. Department of Transportation, coolant-related problems are the primary cause of mechanical breakdowns on the highway. Many of these breakdowns could have been avoided by the use of proper coolant and the right additives.

Subaru Cold Weather And Driveability

Subaru Cold Weather And Driveability:

The Winter season brings cold weather to many parts of the country, and with it the traditional driveability problems.

Subaru Cold Weather And Driveability: The Winter season brings cold weather to many parts of the country, and with it the traditional driveability problems.

Before you push the panic button on Subaru cold weather and driveability problems, remember:

• No vehicle runs as well when it is cold as it does when it is at normal operating temperature.

• You have been operating the vehicle in more moderate temperatures and has gotten accustomed to the way it has been running. Now it is colder and things are not working the same.

• Some areas of the country may be using gasoline blended for warmer temperatures. These fuels normally do not atomize as well in cooler temperatures.

• Oxygenated and reformulated fuels that are in use in many parts of the country are normally harder to ignite in cold cylinders.

• Many drivers get their gas at one station because it may be close to home or work. Question them about this and if this is true, suggest they try a different brand of gas. It may take a couple tanks before any improvement is noticed. Different manufacturers blend their fuels differently.

• The 4EAT has a temperature sensor in the ATF and the Transmission Control Unit (TCU) will not allow an up-shift into 4th gear until the ATF has reached a specific temperature. This 4EAT design characteristic may be interpreted as a driveability problem by a driver who is not familiar with 4EAT operation.

There are many reasons for Subaru cold weather and driveability issues during cooler weather. Spending a few minutes with your Subaru and look over the points listed above should eliminate misconceptions about the Subaru cold weather performance and driveability characteristics of Subaru vehicles.

 

LSD Mechanical DCCD Advantage Explained:

LSD Mechanical DCCD Advantage Explained:

LSD: Advantages of mechanical LSD

The mechanical LSD mechanism is advantageous in that it has good response of the LSD differential limiting force to the engine driving force and has direct vehicle operational stability allowing the driver to easily grasp changes in the vehicle behavior. This post discusses these advantages in comparison with conventional DCCD system.

LSD Mechanical Advantage: Controlling coil current based on driving
force estimated from detected information.

LSD Mechanical Advantage: The LSD differential limiting force exactly
follows changes in the engine driving force.

DCCD Subaru STi Explained

DCCD Subaru STi Explained:

The Driver’s Control Center Differential system is system that appropriately controls the differential limiting force of center differential LSD depending on running conditions of a vehicle. The DCCD system evolved provides controls that follow operations of the driver, while conventional DCCD system provides those based on conditions of the vehicle.

The system consists of a center differential of planetary gear type provided with LSD function, a steering angle sensor, a yaw rate sensor, a lateral G sensor, a DCCD control module and other components.

DCCD: The DCCD system evolved provides controls that follow operations of the driver, while conventional DCCD system provides those based on conditions of the vehicle.

Hybrid LSD mechanism using conventional electromagnetic clutch LSD mechanism added with torque-sensitive mechanical LSD mechanism allows approximate coincidence between the vehicle acceleration/deceleration and LSD clutch differential limiting timings, resulting in linear LSD characteristics acquired through driver’s accelerator operation. Thus, the driver can more freely control the vehicle by easily grasping behavior of the vehicle.

In addition, the steering angle sensor let the DCCD control module know the driver’s intension of turning. In combination with the yaw rate and lateral G sensors, it adjusts the electromagnetic clutch LSD differential limiting force based on the running path imaged by the driver and the actual behavior of the vehicle. Thus, cornering in better accordance with the driver’s image is enabled, preventing occurrence of understeer and oversteer.

LSD MECHANICAL DCCD ADVANTAGE EXPLAINED

For balancing between the vehicle turning performance and traction during turning in a high order, the center differential driving torque is set to have distribution ratio 41:59.

 

DCCD: For balancing between the vehicle turning performance and traction during
turning in a high order, the center differential driving torque is set to have distribution ratio 41:59.

 

Manual mode switch/DCCD control dial

In manual mode, the DCCD control can be used to adjust the differential limiting force of the electromagnetic clutch LSD mechanism in the range from free to lock. Current settings of the control dial are displayed on the indicator in the meter.

DCCD: In manual mode, the DCCD control can be used to adjust the differential limiting force of the electromagnetic clutch LSD mechanism in the range from free to lock.

 

NEXT PAGE

SI-Drive 2008+ STi Explained:

SI-Drive 2008+ STi Explained:

The 2008 Subaru Impreza WRX STI has a heritage of power and control. Previous models have been the foundations for countless racing victories and championships. The new WRX STI promises the same with it’s 305- horsepower, turbocharged, intercooled Boxer engine and a six-speed manual transmission.

SI-Drive: he new WRX STI promises the same with it’s 305- horsepower, turbocharged, intercooled Boxer engine and a six-speed manual transmission.

Power and control incorporate enhanced technology. As suggested by new switchgear on the dashboard and center console and my markings within the instrument cluster’s center-mounted tachometer, a driver has some things to learn before wringing out the most from the car.

Today’s electronics now allow the driver to tinker with engine response characteristics, the manner in which All-Wheel-Drive system fights for traction, and the degree to which braking and engine management help maintain vehicle stability. These capabilities are made possible by standard Vehicle Dynamics Control (VDC), Driver Controlled Center Differential (DCCD), and Subaru Intelligent Drive (SI-Drive).

Battery Charging Subaru:

Battery Charging Subaru:

Batteries low in voltage (below 11.6 volts) need to be specially charged. A battery at this voltage is heavily sulfated and needs either a very long, slow charge, or a very high initial charge voltage.

Battery Charging Subaru: Batteries low in voltage (below 11.6 volts) need to be specially charged. A battery at this voltage is heavily sulfated and needs either a very long, slow charge, or a very high initial charge voltage.

The battery should be left on the battery charger for at least two days. Since the acid in the battery will mostly be stratified, it needs sufficient overcharge to mix. Even after a two day charge, the battery still may only come to 60-80 percent of capacity and may need to be cycled to come to full charge. If possible, once the battery is fully charged by this method, it’s advisable to finish with a constant 1 amp for an additional 24 hours.

A battery that is below 11.6 volts can also be hydrated. This means there is lead sulfate in the separator that will form lead shorts once the battery charges. Because of these shorts, the battery may self discharge once the battery has been recharged.

Emission Testing State Subaru

 Emission Testing Subaru:

Emission testing of a Full-Time 4WD or all-wheel-drive vehicle must never be performed on a single two-wheel dynamometer, nor should a state I/M program inspector or its contractors install the FWD fuse in the engine compartment. Attempting to do so will result in uncontrolled vehicle movement and may cause an accident or injuries to persons nearby.

State Emission Testing Subaru: Emission testing of a Full-Time 4WD or all-wheel-drive vehicle must never be performed on a single two-wheel dynamometer.

Resultant vehicle damage due to improper testing is not covered under the SUBARU Limited Warranty and is the responsibility of the state I/M Program or its contractors or licensees.

The 1990 Clean Air Act Amendments require the Environmental Protection Agency (EPA) to implement programs to reduce air pollution from motor vehicles. Certain states are required to adopt either a “basic” or “enhanced” vehicle Inspection/Maintenance (l/M) Program, depending on the severity of their air pollution problem.

The ‘enhanced’ I/M emission testing simulates actual driving conditions on a dynamometer and permits more accurate measurement of tailpipe emissions than the ‘basic’ I/M test, which measures emissions only during engine operating conditions at idle and 2500 RPM. The ‘enhanced’ l/M test also includes a pressure check to identify evaporative emissions leaks in the fuel system.