Category Archives: Impreza

Subaru OBD2 Decoding Explained

Subaru OBD2 Decoding

Few types of diagnostic trouble codes can be more confusing than those dealing with emission problems. From the beginning of mandatory Subaru OBD2 in 1996, more codes have been added and some have changed. Here’s a look at how Subaru of America, Inc. has added and streamlined P0400-series DTCs.

Subaru OBD2 Decoding: Locations of the OBD2 ports in various Subaru cars.

Emissions-related Subaru OBD2 diagnostic trouble codes (DTCs) have evolved over the last dozen years to more precisely pinpoint the problems in automotive systems. The handful of emissions codes used for On-Board Diagnostic (OBD) systems on the late 1980s and early 1990s has grown to nearly a hundred today. Over that time, many DTCS have been modified to more accurately reflect the cause, while others have been added to the list to address issues with advancing technology.

In order to understand how these factors affect Subaru OBD2 vehicles, it’s necessary to first look at the history of emissions control, on-board diagnostics and the DTC coding system.

Wheel Bearing Guide Subaru

Wheel Bearing Subaru Guide:

The amount of force exerted on wheel bearings is astounding. Each bearing is required to smoothly control the rotation of the wheel to the tune of about a thousand revolutions per mile, support the transfer of power to the wheels for rapid starts and sudden stops, and handle the powerful lateral twisting force of the tires changing direction against the pavement — all while supporting a vertical load of hundreds of pounds. And, we expect them to perform flawlessly just about forever? Not realistic.

Wheel Bearing Guide Subaru: This tapered roller bearing was damaged by faulty seals that allowed water and dirt to enter the bearing.

The “Achilles Heel” of a wheel bearing is the seal. Although wheel bearings can fail due to damage, improper installation or material imperfection, the most common cause of failure is the seal losing its ability to hold the lubricating grease in and/or dirt and water out.

However, the best seal, applied to the best wheel bearing, cannot be expected to last if not correctly installed. This primer can help you properly service Subaru wheel bearings.

Brake Noise Is It Normal?

Brake Noise Is It Normal?

One of the most common concerns that any vehicle owner perceives as a problem is brake noise when stopping the vehicle. The question pops up: “What is considered to be an ‘acceptable’ level of brake noise?”

Brake Noise Is It Normal? One of the most common concerns that any vehicle owner perceives as a problem is brake noise when stopping the vehicle.

The disc brake systems used on vehicles today are designed and developed to meet many different, but very strict requirements. This must be accomplished while providing an optimum level of performance under a wide range of vehicle and environmental operating conditions.
The brake pads selected must be a balanced choice. There is a fine line between a quiet brake pad and one that will provide optimum performance under extreme braking conditions. Consequently, when a change is made in the brake pad formulation (whether it is meant to provide longer pad life, shorter stopping distances, noise reduction or a change in pedal effort), a trade-off must be made in one area or another.

An example of pad formulation change would be the industry’s switch from asbestos to semi-metallic brake linings.

Clutch Pedal Sticking Subaru

Clutch Pedal Sticking Subaru:

If you encounter a clutch pedal not returning completely after being engaged, or if there is a spongy or light clutch pedal feel while shifting, the following repair method should be followed.

Clutch Pedal Sticking Subaru: This condition may affect certain manual transmission vehicles with a hydraulic clutch system under certain weather conditions.

This condition may affect certain manual transmission vehicles with a hydraulic clutch system under certain weather conditions.The affected manual transmission Subaru models are as follows:

1995-2002 Legacy
1997-2007 2.5L Impreza
1998-2003 Forester

To correct this condition you must replace the parts in the chart that match your vehicle using the following procedures:

Replacement Clutch Parts:

Turbocharger Terms and Definitions

Turbocharger Terms and Definitions:

The turbocharger terms and definitions used to describe turbocharger operation can be confusing.

Turbocharger Terms and Definitions: The turbocharger terms and definitions used to describe turbocharger operation can be confusing.

Here are some definitions for common turbocharging terms:

■ Boost Threshold

Boost threshold is the optimum engine speed to produce exhaust gas flow to create positive manifold pressure (boost).

■ Turbo Lag

Turbo lag is the time delay between the point when the throttle is opened and the turbocharger boost reaches operational speed when the engine is running at boost threshold.

Many factors affect turbo lag:

Engine tuning status; the condition of the rotating components; operational condition of the control sensors and components; the presence of any air leaks in the turbocharger system; the control settings; and even the weather.

■ Boost Leak

When air (boost) is leaking within the turbo system or intake, it is referred to as “boost leak.” This may be caused by loose assembly of the components, a bad seal or a cracked component. Under such a condition, the turbocharger may not create enough boost pressure, or reach adequate levels.

■ Boost Spike

A boost spike is an erratic increase in boost pressure, mainly experienced when the vehicle is accelerating through the lower gears and the controller can’t adjust to the changes in engine speeds as quickly as would be ideal.

Subaru Cold Weather And Driveability

Subaru Cold Weather And Driveability:

The Winter season brings cold weather to many parts of the country, and with it the traditional driveability problems.

Subaru Cold Weather And Driveability: The Winter season brings cold weather to many parts of the country, and with it the traditional driveability problems.

Before you push the panic button on Subaru cold weather and driveability problems, remember:

• No vehicle runs as well when it is cold as it does when it is at normal operating temperature.

• You have been operating the vehicle in more moderate temperatures and has gotten accustomed to the way it has been running. Now it is colder and things are not working the same.

• Some areas of the country may be using gasoline blended for warmer temperatures. These fuels normally do not atomize as well in cooler temperatures.

• Oxygenated and reformulated fuels that are in use in many parts of the country are normally harder to ignite in cold cylinders.

• Many drivers get their gas at one station because it may be close to home or work. Question them about this and if this is true, suggest they try a different brand of gas. It may take a couple tanks before any improvement is noticed. Different manufacturers blend their fuels differently.

• The 4EAT has a temperature sensor in the ATF and the Transmission Control Unit (TCU) will not allow an up-shift into 4th gear until the ATF has reached a specific temperature. This 4EAT design characteristic may be interpreted as a driveability problem by a driver who is not familiar with 4EAT operation.

There are many reasons for Subaru cold weather and driveability issues during cooler weather. Spending a few minutes with your Subaru and look over the points listed above should eliminate misconceptions about the Subaru cold weather performance and driveability characteristics of Subaru vehicles.

 

LSD Mechanical DCCD Advantage Explained:

LSD Mechanical DCCD Advantage Explained:

LSD: Advantages of mechanical LSD

The mechanical LSD mechanism is advantageous in that it has good response of the LSD differential limiting force to the engine driving force and has direct vehicle operational stability allowing the driver to easily grasp changes in the vehicle behavior. This post discusses these advantages in comparison with conventional DCCD system.

LSD Mechanical Advantage: Controlling coil current based on driving
force estimated from detected information.

LSD Mechanical Advantage: The LSD differential limiting force exactly
follows changes in the engine driving force.

DCCD Subaru STi Explained

DCCD Subaru STi Explained:

The Driver’s Control Center Differential system is system that appropriately controls the differential limiting force of center differential LSD depending on running conditions of a vehicle. The DCCD system evolved provides controls that follow operations of the driver, while conventional DCCD system provides those based on conditions of the vehicle.

The system consists of a center differential of planetary gear type provided with LSD function, a steering angle sensor, a yaw rate sensor, a lateral G sensor, a DCCD control module and other components.

DCCD: The DCCD system evolved provides controls that follow operations of the driver, while conventional DCCD system provides those based on conditions of the vehicle.

Hybrid LSD mechanism using conventional electromagnetic clutch LSD mechanism added with torque-sensitive mechanical LSD mechanism allows approximate coincidence between the vehicle acceleration/deceleration and LSD clutch differential limiting timings, resulting in linear LSD characteristics acquired through driver’s accelerator operation. Thus, the driver can more freely control the vehicle by easily grasping behavior of the vehicle.

In addition, the steering angle sensor let the DCCD control module know the driver’s intension of turning. In combination with the yaw rate and lateral G sensors, it adjusts the electromagnetic clutch LSD differential limiting force based on the running path imaged by the driver and the actual behavior of the vehicle. Thus, cornering in better accordance with the driver’s image is enabled, preventing occurrence of understeer and oversteer.

LSD MECHANICAL DCCD ADVANTAGE EXPLAINED

For balancing between the vehicle turning performance and traction during turning in a high order, the center differential driving torque is set to have distribution ratio 41:59.

 

DCCD: For balancing between the vehicle turning performance and traction during
turning in a high order, the center differential driving torque is set to have distribution ratio 41:59.

 

Manual mode switch/DCCD control dial

In manual mode, the DCCD control can be used to adjust the differential limiting force of the electromagnetic clutch LSD mechanism in the range from free to lock. Current settings of the control dial are displayed on the indicator in the meter.

DCCD: In manual mode, the DCCD control can be used to adjust the differential limiting force of the electromagnetic clutch LSD mechanism in the range from free to lock.

 

NEXT PAGE