Tag Archives: VF48

Subaru Turbocharger Explained Part 1

Subaru Turbocharger Explained:

Turbochargers are fairly simple in concept, but adapting the system to modern vehicles can be quite complex. This primer for those new to servicing turbos and review for veterans lays out the function and operation of turbocharging in Subaru vehicles.

Subaru Turbocharger: Starting with 2004 models, the WRX STi incorporates a
water spray system to help cool the intercooler, thereby
further cooling the intake air.

The return of turbocharging in the 2002 Impreza WRX marked an absence of nearly a decade for Subaru vehicles. While the new generation has been around for half a decade, not everyone understands the function and operation of Subaru turbocharging systems.

Naturally, everyone knows these blowers are designed to get the maximum power out of engines by packing more air and fuel into the cylinders to get the biggest bang possible. Just how that is accomplished, however, may be a bit of a mystery to you. Here’s a primer on turbocharging and how it applies to Subaru vehicles.

Subaru Turbocharger Explained:

A Brief History of Turbochargers

Turbochargers were originally invented to increase the volume of air pushed into the cylinders of internal combustion engines, and, along with increased fuel, raise the level of energy produced by the combustion process

Historical references indicate that Swiss engineer Alfred J. Buchi adapted the turbines from steam engines to diesel engines as a method to improve air induction, and, therefore, smoother operation in internal combustion engines. In 1905, Buchi’s idea of powering the forced air induction by exhaust flow was granted a patent. Good idea or not, the fairly crude engines of the day could not sustain even or adequate boost pressures. Buchi worked another ten years before he could produce a working model of a turbocharged diesel engine. By that time, other companies had also produced turbocharging systems

The massive building boom of internal combustion engines to supply ships, trucks and airplanes for World War I saw technologies take a giant leap forward. The first turbocharged diesel engines for ships and locomotives appeared around 1920. Shortly thereafter, European car manufacturers began incorporating them into factory race cars and a few sporty luxury models.

The next milestone for turbocharging came with the military build-up for World War II, when turbo systems were fitted to fighter planes and bombers to allow them to fly at higher altitudes where the thinner air could be compacted into the engines to provide sufficient combustion. However, direct-driven superchargers quickly proved more reliable, efficient and more easily controlled, leaving turbochargers by the wayside.

It wasn’t until the mid-1950s when turbochargers started appearing on diesel trucks that modern turbos began to make a dent in the automotive market. Today, the vast majority of truck engines are turbodiesels.

When turbocharged vehicles began to dominate the international racing scene in the 1960s, car manufacturers began to use them in sporty models to appeal to performance-oriented drivers. By the 1980s, turbochargers for cars were a bona fide success, particularly in Subaru vehicles, due to improved metallurgy, intercooling and efficient boost controls.

The main components of a Subaru turbocharger system are a water-cooled turbocharger, an air-cooled intercooler, a wastegate control solenoid valve, sensors and a controller. Let’s review the individual components and the role they play in the system.

Turbo: STi/WRX VF Series Turbocharger breakdown:

Turbo: STi/WRX VF Series Turbocharger breakdown:

IHI VF Series
The numbering on both the VF turbos are for reference purposes and not necessarily indicative of its ‘performance’. On GC8/GF8 WRX STi, the VF turbos have gone ‘smaller’ from VF22 to 23, 24, 28, 29 while the release of the New Age STi GDB saw the introduction of a new breed of VF turbos with a bigger compressor wheel namely, VF30, VF34, VF35 for example. The previous VF turbos (VF22,23,24,28,29) have been ball bearing cored while the later ones (VF30, VF35) are Divided Thrust Bearing type core, with the VF34 being a Ball Bearing.

IHI VF22
(455cfm at 18.0psi, 250-325whp, Bolt-On)
The VF22 has the largest potential for peak horsepower. In other words, in the IHI model range, the VF 22 supports the highest boost levels. With its significantly increased turbine housing, the VF22 turbo is capable of producing upwards of 310 whp* on an EJ20. The downside of this turbo is the older center cartridge design and larger compressor housing, which makes for slower spool up but more top-end than the other VF series turbos.

This turbo is the best choice for those who are looking for loads of top end power. The top end power however, does not come without a cost. The VF22 spools significantly slower than the rest of the IHI models due to the larger P20 exhaust housing and is much less suited for daily driving than some of the other models. Although the largest VF series turbo, the VF22 is not quite optimal for stroked engines or those who wish to run more than 20PSI of boost.

The VF22’s compressor is rated at 35 lbs/minute. The VF22 was designed with the EJ20 in mind but because it has the biggest turbine in the IHI family it can be use on the EJ25 with a slight increase in performance. The VF22 is good for around a realistic 300 to 315 WHP on a 2.0L. The IHI VF-22 turbo is the largest of the VF-series turbos.

VF22: The IHI VF-22 turbo is the largest of the VF-series turbos.

IHI VF34
(440cfm at 18psi, 250-325whp, Bolt-On)
The VF34 is nearly identical to the VF30, with the same exhaust housing and compressor. However the VF34 goes back to the ball bearing design, and in doing so achieves full boost approximately 500RPM sooner than the comparable VF30. The VF34 is the most recent IHI design and as such costs slightly more than its counterpart.

Top end performance and maximum output are identical to the 30. The VF34’s compressor is rated at 35 lbs/minute but the turbo suffers from the same turbine restrictions found with the VF30. The VF34 was designed with the EJ20 in mind and will not have the same performance on an EJ25. The VF34 is good for around a realistic 290 to 305 WHP on a 2.0L.

VF34: The VF34 was designed with the EJ20 in mind and will not have the same performance on an EJ25. The VF34 is good for around a realistic 290 to 305 WHP on a 2.0L.

Turbocharger: How to choose a Turbocharger

Turbocharger: How to choose a Turbocharger for your Turbo Subaru:

In order to make an informed decision when purchasing an aftermarket turbocharger, the consumer needs to avail themselves of the different types of turbochargers first. To this end, we will discuss the various types of turbos on the market. These are just the basics of turbo information though. Please do not confuse this as the main source for turbo information as there are many other factors to an informed turbo choice such as compressor maps, matching the turbo to your displacement, etc. For the best advice, please consult an experienced turbo vendor and/or your tuner.

A regular turbo is, in essence, a pump that forces air into your intake system. The end result is a denser air charge that will produce more power vs. naturally aspired vehicles. The only downside is that more power produces more heat, and the engine’s internal components must be properly suited towards turbo charging. Upgrading this unit to a larger one is the easiest route in terms of time, trouble, and expense. Common upgrades for all turbocharged Subaru models include the VF-30/34/22 and 16/18/20G.

A twin scroll turbo is designed to be used on an equal length exhaust set-up. By internal turbo design and having all the exhaust gases enter the turbo at the same time, this allows the turbo to spool faster vs. an equally sized regular turbo. This is a very important point as many people are confused by the marketing hype of twin scroll set-ups. When comparing a twin scroll turbo that will flow say 500 cfm vs. a normal 500 cfm turbo, the twin scroll should see full boost sooner. So if there are two suitably sized turbochargers, with one being twin scroll and one regular, the twin scroll unit may be your best choice if you do not mind the extra exhaust expense and prefer faster spooling.

This type of turbocharger requires more expense than a simple upgrade though. The biggest concern is the use of an equal length header, proper uppipe design, and the possible use of a different oil pan to accommodate the new twin scroll exhaust piping. Quirt Crawford of Crawford Performance recently did some testing on a GT32 twin scroll turbo Legacy to test the theory about the importance of exhaust flow to a twin scroll unit. When he switched from the correct equal length header and uppipe to a traditional unequal length header and normal uppipe, he saw degradation in turbo response by 750 RPM. This should be word to the wise to anyone who thinks they can avoid the expense of the correct exhaust components and still see the quicker spooling benefits of a twin scroll turbo.

Another consideration is the change in exhaust tone. An equal length header required in a twin scroll set-up sounds entirely different than an OEM or aftermarket unequal length header. To fans of the familiar boxer rumble, equal length headers are just not an option. It may sound silly, but for many, this reason alone is enough to keep them from buying a twin scroll turbo.

A rotated mount turbo is any turbo that’s physical size prevents it from fitting in the stock location and must be mounted at a slightly different angle. Most of the turbos that fall into this category are of the larger variety. Many require custom piping, a front mount intercooler, external wastegates, custom tuning, tumble generator valve deletes, and other technical or expensive upgrades to support it. Most would consider this type of turbo to be outside the scope of the average do it yourself person and should be farmed out to a professional or at least utilize one of the kits supplied by various manufacturers.

As well, many feel that when going this route, strong consideration should be given to fully built motor, or at the very least, forged pistons. Rotated mount turbos produce large amounts of power and though there is no magic horsepower number for switching to forged internals, the larger rotated mount set-ups seem to be commonly used on built motors.