Tag Archives: Outback

Subaru OBD2 Decoding Explained

Subaru OBD2 Decoding

Few types of diagnostic trouble codes can be more confusing than those dealing with emission problems. From the beginning of mandatory Subaru OBD2 in 1996, more codes have been added and some have changed. Here’s a look at how Subaru of America, Inc. has added and streamlined P0400-series DTCs.

Subaru OBD2 Decoding: Locations of the OBD2 ports in various Subaru cars.

Emissions-related Subaru OBD2 diagnostic trouble codes (DTCs) have evolved over the last dozen years to more precisely pinpoint the problems in automotive systems. The handful of emissions codes used for On-Board Diagnostic (OBD) systems on the late 1980s and early 1990s has grown to nearly a hundred today. Over that time, many DTCS have been modified to more accurately reflect the cause, while others have been added to the list to address issues with advancing technology.

In order to understand how these factors affect Subaru OBD2 vehicles, it’s necessary to first look at the history of emissions control, on-board diagnostics and the DTC coding system.

Wheel Bearing Guide Subaru

Wheel Bearing Subaru Guide:

The amount of force exerted on wheel bearings is astounding. Each bearing is required to smoothly control the rotation of the wheel to the tune of about a thousand revolutions per mile, support the transfer of power to the wheels for rapid starts and sudden stops, and handle the powerful lateral twisting force of the tires changing direction against the pavement — all while supporting a vertical load of hundreds of pounds. And, we expect them to perform flawlessly just about forever? Not realistic.

Wheel Bearing Guide Subaru: This tapered roller bearing was damaged by faulty seals that allowed water and dirt to enter the bearing.

The “Achilles Heel” of a wheel bearing is the seal. Although wheel bearings can fail due to damage, improper installation or material imperfection, the most common cause of failure is the seal losing its ability to hold the lubricating grease in and/or dirt and water out.

However, the best seal, applied to the best wheel bearing, cannot be expected to last if not correctly installed. This primer can help you properly service Subaru wheel bearings.

Steering Systems on early Subarus Part 1

Steering Systems on early Subarus Part 1:

Rack And Pinion Steering Mechanism

Subaru steering systems utilize a rack and pinion steering mechanism. As the pinion gear rotates, the rack moves left or right. Rack and pinion steering gives the driver precise control over the wheels. The simple, compact design is easy to service.

Steering Systems on early Subarus Part 1: The Subaru SVX used Subaru’s early power steering system.

CGR – VGR Ratios

Two manual steering racks are used in Subaru vehicles: a constant gear ratio (CGR) rack and a variable gear ratio (VGR) rack. The teeth on the CGR rack are equally spaced so the turning effort is equal throughout the turning range. The teeth on the VGR rack are spaced closer together on the ends of the rack than in the middle. The turning effort decreases as the turning angle increases so sharp-radius turns are easier to make.

Legacy and SVX Steering Racks

Several different power steering racks have been installed in Subaru vehicles. The racks used in the L-series, XT, Legacy and SVX vehicles are similar. All have a one-piece gearbox and lack the external air vent distribution tube found on the rack in pre-’85 and carryover vehicles. However, the XT rack differs from the L-series rack in several ways.

The XT rack is made of aluminum and has a different control valve. Different types of hydraulic seals are used in the two racks, and each has its own unique special service tool. The power steering rack in the pre-’85 model year vehicles and the Brat has a two-piece gearbox and an air vent distribution tube. It also has seals, service procedures and special service tools that differ from the other racks.

Rigid Steering Column

Three types of steering columns are used in Subaru vehicles: a rigid steering column, a tilt steering column and the XT and SVX tilt and telescoping steering column. The rigid steering column is found on L-series DL models, the Legacy standard model, and Justy vehicles. The rigid steering shaft does not tilt or pop-up, but is collapsible (a safety feature). The shaft is connected to the gearbox by universal joints.

ABS for Early Subaru Part 4:

ABS Brake System for Early Subaru Part 4:

Troubleshooting Process:

To troubleshoot ABS systems, it’s best to follow a step-by-step procedure like the one on the 1992 Legacy ABS-2E Service Manual Supplement. Enter the flow diagram with the symptom reported on the repair order.

ABS Brake System for Early Subaru Part 4: The Subaru Legacy RS was known for using this ABS System.

The diagram calls that Trouble Occurs. The first step in the procedure is “Basic Checks.” This calls for a visual inspection to look for obvious problems and includes the following items:

• improper battery voltage
• low brake fluid level
• brake fluid leaks
• brake drag
• condition of the brake pads and rotors
• size, type, and condition of the tires (Check the tires to confirm that they are the correct tires for the vehicle, that they are in good condition, and that they are inflated to the correct pressure).

If you find something wrong at this stage, correct it and see whether it eliminates the reported symptom. If not, continue to Step 3. Step 3 is Self-diagnosis. At this time, put the ECU into self-diagnostic mode, and monitor the ABS warning lamp for trouble codes.

Maintenance:Subaru Periodic Maintenance Part 3:

Maintenance: Subaru Periodic Vehicle Maintenance Services:

Brake Fluid:

Many late model Subaru vehicles are equipped with ABS braking systems. The added complexity of these systems provides an additional incentive for following the recommended brake fluid replacement interval of 30 months or 30,000 miles. Brake fluid accumulates water and other contaminants over time. These contaminants can attack the internal parts of the brake system, compromising its performance and possibly causing brake failure.

Maintenance: Subaru Periodic Vehicle Maintenance Services: Make sure to replace brake fluid at least every 30 months of 30,000 miles. At least once a year if the Subaru sees heavy track use.

The brake master cylinder has a semi-transparent reservoir, making it possible to check the fluid level without removing the reservoir cover. This minimizes the exposure to outside air and limits the amount of moisture that can reach the brake fluid. The fluid level will drop as the brake shoes and pads wear, but the reservoir is large enough to compensate for these changes. If the fluid level is very low, it’s a sure sign the brake pads or shoes are nearly worn out, or there is a leak in the brake system.

Note: When the brake fluid level in the reservoir tank is lower than the specified limit, the brake fluid warning light in the combination meter will come on.

Subaru warns against mixing brake fluids from different manufacturers. Doing so may degrade the quality of the fluid. Only DOT 3 or 4 brake fluid should be used in any Subaru vehicle preferably Subaru brake fluid if you are not going to do a track day build. Consult the service manual for vehicle specific brake bleeding procedures.

Subaru OEM Brake Fluid:

Subaru SOA868V9220 Brake Fluid – 1 Pint