Category Archives: STi

Spark Plug replacement on a Subaru Impreza STi/WRX

The following procedure explains removing and replacing spark plugs on a Subaru Impreza STi. The original instructions below specifically refer to fitting Denso Iridium spark plugs that are one step colder however these procedures are generic for OEM plugs also. Please click the thumbnail pictures below for a full size version.

The author indicates this took around 1 hour to complete the first time, perhaps half that next time. Right, off you go you are being timed!

Procedure

Remove the battery and windshield washer fluid reservoir (Step 1)

This is simple, just four bolts holding the battery and two bolts (<< seen in step one), a hose and a clip (<< seen in step 1.1) holding the washer reservoir in.

Spark plug step 1.) Battery Removal.
Spark Plug removal step 1.) Windshield washer reservoir.

Removing intake and assembly (Step 2)

Note: the author can break this down further as he doesn’t have the stock intake, instead the K&N typhoon is shown. The stock intake is very easy just a couple of bolts, clamps etc. (<< steps 2 and 2.1)

Spark plug step 2.) Remove intake duct.
Spark plug step 2.) K&N Removal

Coolant use and Cooling System for Subaru WRX/STi

What type of coolant should I run in my car? You can never go wrong by using Genuine Subaru Coolant available through your local dealer.

Subaru Genuine Coolant. To the left Super Coolant and to the right long life coolant.

Is the Subaru coolant pre-mixed or not? They have both kinds, but BE SURE to read the labels carefully as they are nearly identical in appearance except the wording on the package!

Is there a required coolant additive? Yes. Subaru Cooling System Conditioner has recently been required to be added with every coolant replacement to prevent coolant system leaks. This recommendation applies to every Subaru model for every model year.

Subaru Cooling System Conditioner has recently been required to be added with every coolant replacement to prevent coolant system leaks. This recommendation applies to every Subaru model for every model year.

Spark Plug info for your Subaru WRX/STi:

Spark Plug info for your Subaru WRX/STi:

Refer to your owners manual for recommendations. Alternately, you can visit an auto parts store or online retailer for recommendations on suitable spark plugs designed for your vehicle. Major manufacturers are:
a. NGK
b. Bosch
c. Denso
d. Autolite
e. Champion

STi spark plug location

Who are the specialty spark plug manufacturers? These manufacturers make specialty plugs that have unique compositions or designs that claim increases over traditional plugs. They are listed for advanced users or those with interest.
a. Torquemaster
b. Beru (specifically the Silverstones found here)
c. SplitFire
d. PREP spark plugs
e. E3 spark plugs
f. Pulstar plugs

What types are there? There are really three main types:
a. conventional nickel alloy (commonly referred to as “copper”)
b. platinum
c. iridium

Which type should I use? That depends on how often you are interested in changing the spark plugs. Conventional spark plugs generally last one year. Platinum or iridium can last, depending on manufacturer specifications, up to seven years.

What’s some good background spark plug information?

Materials: The three main types of spark plug materials are nickel alloy, iridium, and platinum. Copper can be used in the core all plugs.

All ground electrodes are made of nickel. The use of Platinum and Iridium, which are stronger, allow for much finer CENTER electrodes (the ground electrode is still Nickel). These finer electrodes do not quench the flame core as much as a conventional style plug. This increases ignitability, therefore increasing HP. It’s not a huge gain, but cylinder pressures are measurably higher.

Platinum or iridium can be used as a thin pad which is laser welded on the ground electrode (the “J” strap), this serves to increase the life of the plug.

Pulley Subaru WRX/STi Rundown

The primary purpose of an aftermarket pulley is to reduce the size and/or mass of the stock unit. They serve two purposes: to reduce horsepower loss and increase throttle response. Notice the use of “reduce horsepower loss”. Pulleys DO NOT add horsepower, rather they free up horsepower due to the reduction of rotational mass.


Grimmspeed Lightweight Crank Pulley Black – Subaru All EJ Engines

A lightweight aftermarket perrin pulley.

HP gain is 5-10HP. These HP figures are a range as there have been very few before/after dyno runs with lightened or under driven pulleys.

What is a lightened pulley? Generally, it is an exact copy of the OEM pulley only CNC machined out of aircraft grade aluminum and powder coated for corrosion protection and aesthetic appeal.

What is an under driven pulley? This is a pulley that mimics the function of the OEM unit, but is smaller in diameter. This will reduce the duty cycle of the pulley and proportionally the parasitic drag on the engine.

Are under driven pulleys bad? It depends on the amount they are under driven. Some under driven pulleys can lead to reduced A/C output, lighting problems, stereo problems, and other voltage issues. Some are lightly under driven and some more so.

Isn’t replacing the stock harmonic damper (pulley) bad? Subarus do not come with a harmonic damper or balancer like some other vehicles do. For other manufacturers’ vehicles, this is a legitimate concern. Proof:

“Thank you for your patience as I checked with our Technical Services Department regarding your message below. They advised that the crank pulley is a pulley and nothing else. It is not used as a harmonic damper/balancer.

Thanks for the opportunity to be of assistance. If you need any future assistance, please feel free to contact us again.”

Best wishes,

John J. Mergen
Customer Service Department
Subaru of America, Inc.

Engine Management For Subaru WRX/STi

 

Why do I need engine management?

 


Consider your stock engine management for just a moment. Your stock engine control unit (ECU) is a very complex piece of circuitry that calculates hundreds of variables every second. All of these variables rely on inputs within a + or – range. When you modify your vehicle, these values change. As long as the changes are within the values the ECU expects to receive, your engine runs fine. Once the values are exceeded, the ECU is programmed to compensate to return the values to normal levels.

A typical way of engine management is to use a Cobb Accessport.

This is a layman’s explanation of how your stock ECU can actually work against you when modifying your vehicle. This also explains why modifications can feel great once they are bolted on but the butt dyno results seem to fade over time. This is due to ECU compensation.

What is the first step in finding what engine management I need? Finding a tuner. The Tuner FAQ will help with the general rules of finding a good tuner. Remember, it’s always better to have a custom tune vs. a plug and play or “staged” map. Always defer to the tuner’s advice as to what to choose as ultimately he will be the one to provide custom support. Discuss your goals and budget and your tuner should set you on the right path. If you are a “plug and play” kind of person, review the options below and decide for yourself along with input from locals in your regional forum and the car parts review forum.

What will engine management do for me? Generally speaking, engine management optimizes several engine functions to create more horsepower and efficiency. The stock ECU is designed to ensure your car runs fine and monitors the engine’s output parameters. Utilizing an aftermarket engine management solution takes this to the next level.

Prodrive GC8 WRX Special Editions

22B “Type UK”

In late 1998, Subaru UK officially imported 16 22Bs (described below), and passed them on to Prodrive for modification. The UK cars differ from the privately imported 22Bs, not just in their 3 year factory warranty, but with revised gear ratios more suited to UK roads.

This was achieved by changing the final drive ratio from 3.9 to 4.44 to lengthen the gearing. Cosmetically, the car got the headlights from the ‘99 model, UK rear light clusters and driving lights (not fog lights!) were fitted where the normal 22B has blanking plates. From the back, you can tell you’re looking at one of the rarest cars in the world by the “Type UK” and “Prodrive” stickers. The price was £39,950, and demand for the cars was overwhelming.

The rear of a Prodrive 22B Type UK.

Interestingly, Subaru UK were not able to put their 16 cars through the Single Vehicle Approval scheme because the maximum of 50 privately imported 22Bs had already been registered in 1998. Consequently the Type UKs were registered in 1999. The cars do not meet European Type Approval regulations for noise and emissions.

Turbocharger: How to choose a Turbocharger

Turbocharger: How to choose a Turbocharger for your Turbo Subaru:

In order to make an informed decision when purchasing an aftermarket turbocharger, the consumer needs to avail themselves of the different types of turbochargers first. To this end, we will discuss the various types of turbos on the market. These are just the basics of turbo information though. Please do not confuse this as the main source for turbo information as there are many other factors to an informed turbo choice such as compressor maps, matching the turbo to your displacement, etc. For the best advice, please consult an experienced turbo vendor and/or your tuner.

A regular turbo is, in essence, a pump that forces air into your intake system. The end result is a denser air charge that will produce more power vs. naturally aspired vehicles. The only downside is that more power produces more heat, and the engine’s internal components must be properly suited towards turbo charging. Upgrading this unit to a larger one is the easiest route in terms of time, trouble, and expense. Common upgrades for all turbocharged Subaru models include the VF-30/34/22 and 16/18/20G.

A twin scroll turbo is designed to be used on an equal length exhaust set-up. By internal turbo design and having all the exhaust gases enter the turbo at the same time, this allows the turbo to spool faster vs. an equally sized regular turbo. This is a very important point as many people are confused by the marketing hype of twin scroll set-ups. When comparing a twin scroll turbo that will flow say 500 cfm vs. a normal 500 cfm turbo, the twin scroll should see full boost sooner. So if there are two suitably sized turbochargers, with one being twin scroll and one regular, the twin scroll unit may be your best choice if you do not mind the extra exhaust expense and prefer faster spooling.

This type of turbocharger requires more expense than a simple upgrade though. The biggest concern is the use of an equal length header, proper uppipe design, and the possible use of a different oil pan to accommodate the new twin scroll exhaust piping. Quirt Crawford of Crawford Performance recently did some testing on a GT32 twin scroll turbo Legacy to test the theory about the importance of exhaust flow to a twin scroll unit. When he switched from the correct equal length header and uppipe to a traditional unequal length header and normal uppipe, he saw degradation in turbo response by 750 RPM. This should be word to the wise to anyone who thinks they can avoid the expense of the correct exhaust components and still see the quicker spooling benefits of a twin scroll turbo.

Another consideration is the change in exhaust tone. An equal length header required in a twin scroll set-up sounds entirely different than an OEM or aftermarket unequal length header. To fans of the familiar boxer rumble, equal length headers are just not an option. It may sound silly, but for many, this reason alone is enough to keep them from buying a twin scroll turbo.

A rotated mount turbo is any turbo that’s physical size prevents it from fitting in the stock location and must be mounted at a slightly different angle. Most of the turbos that fall into this category are of the larger variety. Many require custom piping, a front mount intercooler, external wastegates, custom tuning, tumble generator valve deletes, and other technical or expensive upgrades to support it. Most would consider this type of turbo to be outside the scope of the average do it yourself person and should be farmed out to a professional or at least utilize one of the kits supplied by various manufacturers.

As well, many feel that when going this route, strong consideration should be given to fully built motor, or at the very least, forged pistons. Rotated mount turbos produce large amounts of power and though there is no magic horsepower number for switching to forged internals, the larger rotated mount set-ups seem to be commonly used on built motors.

Header Aftermarket Turbo Subaru FAQ

Header Aftermarket Turbo Subaru FAQ

The primary purpose of an aftermarket header on a turbocharged Subaru is to remove or replace the stock exhaust manifold with a better flowing unit.

An Agency Power Stainless Steel Header for a EJ257.

HP gain is 15HP and 20TQ. This figure is highly debated as different manufacturers use different dynos with different cars with different levels of mods. It also varies because some headers incorporate an uppipe into their design. This makes it nearly impossible to compare the gains of a header without an uppipe vs. a header with an uppipe.

Which manufacturer is best? This topic is highly debated. There have been no reported consistent “bad” headers on the market. Obviously, there may have been bad pipes sold, but not enough to report as “bad” overall.

Where can I find headers?

Subaru WRX STI Header Prosport Unequal Length Stainless Steel Header

Perrin Subaru STi /WRX Header Equal Length Big Tube

AP WRX/ STI Stainless Steel Unequal Length Header w/o Uppipe

Invidia HS05SW1HDR Racing Header for Subaru WRX STI/Legacy GT

Agency Power (AP-GDA-175) Unequal Length Header, Stainless Steel

Perrin PSP-EXT-050 04-08 STi /LGT/FXT/06-08 WRX (06+ WRX requires modification to oil cooler) Header (02-05 WRX Requires STi Oil Pan)

TOMEI 193082 Headers

What differences are there with headers? The main difference is exhaust piping length. Headers are made to be unequal length or equal length. Unequal means the piping on the driver’s side of the engine will be longer than the passenger’s side. Equal means the piping length is equidistant from the engine outlet to the header outlet for all piping.