Category Archives: forester

Axle general maintenance:

Axle general maintenance:

Front stub axle seal replacements require special precautions. The seals are pressed into a side bearing retainer, which must be removed to replace a leaking seal. The side bearing retainers also control front differential side bearing preload, as well as ring and pinion backlash.

When replacing a stub axle seal, mark the position of the side bearing retainer before un-threading the retainer. Remove only one side bearing retainer at a time, or you’ll risk disturbing the differential adjustments. If you’ve marked the position before removal, the correctly installed position of the side bearing retainer will be obvious, as you will be unable to turn the retainer another complete turn.

Axle general maintenance: A driveaxle for a 2008 Subaru Impreza WRX.

The driveaxles on some Subaru vehicles are pressed into the wheel hub with a light press fit. Blasting the axle out of the hub with an air chisel, center punch or other implement of destruction invites damage to the wheel bearings. All of the force brought to bear by these methods finds its way to the wheel bearings, possibly damaging their races or balls. Special tools are available for removing and installing  press-fit driveaxles. Ignoring these cautions invites a comeback for noisy wheel bearings shortly after your CV axle repair work.

ABS for Early Subaru Part 4:

ABS Brake System for Early Subaru Part 4:

Troubleshooting Process:

To troubleshoot ABS systems, it’s best to follow a step-by-step procedure like the one on the 1992 Legacy ABS-2E Service Manual Supplement. Enter the flow diagram with the symptom reported on the repair order.

ABS Brake System for Early Subaru Part 4: The Subaru Legacy RS was known for using this ABS System.

The diagram calls that Trouble Occurs. The first step in the procedure is “Basic Checks.” This calls for a visual inspection to look for obvious problems and includes the following items:

• improper battery voltage
• low brake fluid level
• brake fluid leaks
• brake drag
• condition of the brake pads and rotors
• size, type, and condition of the tires (Check the tires to confirm that they are the correct tires for the vehicle, that they are in good condition, and that they are inflated to the correct pressure).

If you find something wrong at this stage, correct it and see whether it eliminates the reported symptom. If not, continue to Step 3. Step 3 is Self-diagnosis. At this time, put the ECU into self-diagnostic mode, and monitor the ABS warning lamp for trouble codes.

Headlight aiming basics for Subarus:

Headlight aiming basics for Subarus:

Subaru models equipped with aerodynamic headlights require no special fixtures for headlight alignment. Each headlight is equipped with a built-in headlight aiming mechanism. The following sequence demonstrates the correct technique for adjusting the headlights on a Subaru Legacy equipped with aerodynamic headlights.

Headlight aiming basics for Subarus: Some basic headlight adjusting techniques for Subaru cars.

1.) Turn off the headlight before adjusting headlight aiming. If the light is necessary to check aiming, do not turn on the headlights for more than two minutes.

2.) Inspect the area around the headlight for any damage. If the vehicle has been involved in an accident, it may not be possible to properly adjust the headlights until the damage has been professionally repaired.

3.)The vehicle must be parked on level ground and all four tires must be properly inflated.

Maintenance: Subaru Periodic Maintenance Part 4:

Maintenance: Subaru Periodic Maintenance Part 4:

Steering and Suspension:

Steering and suspension parts are a lot like the brake system components. Their proper operation is vitally important to the safety of the driver and his passengers, but it is very difficult to determine how long it will be before any of these components will require attention. That’s why an inspection of all steering and suspension components is required at 15 month/15,000 mile intervals. Changes to these systems may be too gradual for the driver to even notice, leaving it to you to ferret out and correct any wear or damage that has taken place.

Maintenance:Subaru Periodic Maintenance Part 4: Regular checks of the steering and suspension is important.

We won’t cover all of the steering and suspension checks here. There’s too much variation between different Subaru models to do an adequate job. What you’re looking for is anything that reduces the original precision of the steering and suspension systems. Perhaps the steering has a little too much play in it or the shocks and struts don’t handle the bumps in the road as well as they did when new. Specific tests for the Subaru model you’re working on can be found in the service manual.

Check the power steering system for dampness or other signs of fluid leakage. The power steering pump reservoir is a good place to start. If the reservoir is low, the fluid has probably leaked out, as it has no place else to go. Approved fluids for the power steering system include Dexron II, IIE or III.


GENUINE OEM SUBARU ATF-HP P/S FLUID QUART BOTTLE

Antilock Brake System for Early Subaru Part 3:

Antilock Brake System for Early Subaru Part 3:

Damping Oscillations:

An additional benefit of this arrangement is that the mechanical valve damps out some of the unwanted oscillation in the brake pedal as the ABS pump runs. Because of this, the F valve used on the ABS-2SL system is no longer needed and has been eliminated from the circuit.

Antilock Brake System for Early Subaru Part 3: The Legacy RS rally car benefited greatly from having a superior ABS unit.

 

ABS Operating Modes:

To illustrate the four operating modes of this ABS system, we’ll assume that the ECU is operating only the solenoid for the right rear brake circuit. Recall that this circuit also affects the left rear brake circuit through the mechanical valve.

Normal Braking:

• Driver depressing pedal

• ECU passive (monitoring)

• Zero current in solenoid valves

• Pump off

• Plunger piston full right, pressure port open

• Master cylinder pressure supplied to all wheel cylinders

Pressure-Reduce:

• Pump pressure raising pedal

• ECU controlling solenoid valves and pump

• Full current in the right rear solenoid valve

• Pump running

• Plunger piston moves left, closes pressure port; system balances the two rear wheel cylinders.

Pressure-Hold:

• Pedal firm

• ECU controlling solenoid valves and pump

• Half current in the right rear solenoid valve

• Pump Off

• Pressure port closed

• Plunger piston is stationary, maintains reduced pressure in the right and left rear wheel circuits.

Antilock Brake System For Early Subaru Part 2:

Antilock Brake System for Early Subarus:

ABS Service And Brake Bleeding Procedures:

Antilock Brake System for Early Subarus: The first Subaru rally car the Legacy RS relied upon the bousch/nippon ABS units to perform on the WRC circuit.

Always check the fluid level of the master cylinder and bleed the wheel cylinders following the procedure listed in the service manual. When the HCU has been removed and/or replaced, the fluid must be drained. Replace the cone screws with bleed screws and attach a hose to drain fluid to a container.

Antilock: ABS Service And Brake Bleeding Procedures: A early Subaru Nippon ABS unit ECU.

Use extreme care when performing this procedure to prevent damage to the internal components of the HCU. Do not apply AV signal for more than 5 seconds for each application. If no AV signal is received, it is not necessary to close bleed screw between brake pedal applications.

Antilock Brake System Notes and Cautions:

The ECU on early Subaru ABS systems can only display one trouble code–the lowest numbered code. Correct the fault indicated by the trouble code and recheck ECU for another code. Repeat the self-diagnostic procedure listed above, and the next highest code will be displayed. Refer to the appropriate model year service manual for the trouble codes and corrective actions. While the ABS ECU is in the fault mode, the ABS will go to fail-safe and remain passive under all braking conditions. The brake system will function as a conventional power-assisted system without ABS.

Maintenance:Subaru Periodic Maintenance Part 3:

Maintenance: Subaru Periodic Vehicle Maintenance Services:

Brake Fluid:

Many late model Subaru vehicles are equipped with ABS braking systems. The added complexity of these systems provides an additional incentive for following the recommended brake fluid replacement interval of 30 months or 30,000 miles. Brake fluid accumulates water and other contaminants over time. These contaminants can attack the internal parts of the brake system, compromising its performance and possibly causing brake failure.

Maintenance: Subaru Periodic Vehicle Maintenance Services: Make sure to replace brake fluid at least every 30 months of 30,000 miles. At least once a year if the Subaru sees heavy track use.

The brake master cylinder has a semi-transparent reservoir, making it possible to check the fluid level without removing the reservoir cover. This minimizes the exposure to outside air and limits the amount of moisture that can reach the brake fluid. The fluid level will drop as the brake shoes and pads wear, but the reservoir is large enough to compensate for these changes. If the fluid level is very low, it’s a sure sign the brake pads or shoes are nearly worn out, or there is a leak in the brake system.

Note: When the brake fluid level in the reservoir tank is lower than the specified limit, the brake fluid warning light in the combination meter will come on.

Subaru warns against mixing brake fluids from different manufacturers. Doing so may degrade the quality of the fluid. Only DOT 3 or 4 brake fluid should be used in any Subaru vehicle preferably Subaru brake fluid if you are not going to do a track day build. Consult the service manual for vehicle specific brake bleeding procedures.

Subaru OEM Brake Fluid:

Subaru SOA868V9220 Brake Fluid – 1 Pint

Antilock Brake System for Early Subaru Part 1:

Antilock Brake System for Early Subarus:

A variety of antilock brake system (ABS) have been installed in Subaru vehicles since the first systems were installed in the 1990 Legacy.  In the sections that follow, we’ll give you a brief overview of each system and explain proper diagnostic techniques.

Antilock Brake System for Early Subarus: A Subaru SVX ABS system.

Antilock Brake System for Early Subarus:

Early Subaru Antilock Brake Systems:

The original Subaru Legacy Antilock Brake System (ABS) was licensed by Bosch and manufactured by Nippon ABS, Ltd. The system electronically controls brake fluid pressure supplied to the brake system. This control helps to prevent “wheel lockup” during braking on slippery surfaces and emergency situations. The system includes a fail-safe feature, which indicates a malfunction by illuminating the warning lamp. The system is then returned to a conventional power brake system. The four channel system provides accurate individual wheelspeed control and improves the directional stability of the vehicle during braking.

Antilock Brake System (ABS) Components

• Tone wheels (4)

• Speed sensors (4)

• Electronic control unit (ECU)

• Hydraulic control unit (HCU)

• G sensor (manual transmission models)

• Warning lamp

A tone wheel is attached to each wheel hub and rotates at the same speed as the hub. The magnetic speed sensor is mounted in the axle housing. The notched tone wheel acts as a reluctor which modulates the magnetic field of the speed sensor. The tone wheels are individually replaceable.

The speed sensor provides an alternating voltage signal to the ECU. The alternating voltage and frequency corresponds to wheelspeed.