This is a simple overview on diagnosing knock sensor issues with your Subaru Impreza/Forester/Legacy/Etc.
The knock sensor is designed to sense knocking signals from each cylinder. The knock sensor is a piezo-electric type element which converts knocking vibrations into electrical signals. The electrical signal is sent to the ECM, which changes the ignition timing to reduce the engine knock or ping. For this system to work correctly, the knock sensor must first hear the engine ping. The driver of the vehicle may also hear a small engine ping. A delay of approximately 1-2 seconds is normal, depending on the fuel quality, engine load, air temp, etc. At this time, the ECM will retard the timing.
This function can be viewed on the Select Monitor RTRD mode. When the knock is eliminated, the timing is gradually advanced to the specified setting. If engine ping is heard again this process is repeated. This will continue until the knock sensor no longer hears the engine knock or ping.
Note: This is a normal operation of the knock sensor. Do not try to repair it.
The next page will discuss asking the right questions on diagnosing knock sensor failures.
Prior to launching the 1990 Legacy, Subaru drew attention to the car’s capabilities and durability by attempting to set world speed records with the Legacy. In an effort involving three Legacy RS Turbo Sedans, Subaru established a new 100,000 kilometer (62,137 miles) world speed record as well as 13 international records. Some of these records still stand today.
For the 1990 model year, Subaru was launching the Legacy, a front-wheel drive model with optional 4-wheel drive. It was larger than previous Subaru models and had a 2.0-liter, 16-valve, turbocharged engine. Since the car represented a new segment for Fuji Heavy Industries Ltd. (FHI), it wanted to demonstrate the vehicle’s performance, reliability, and durability. Thus began the quest for the 100,000 kilometer (62,137 miles) world record. That represents the distance typically covered during five years of hard driving.
It is not necessary to perform a cool down/idling procedure on Subaru WRX turbo models, as was recommended with past turbo models. “The current 2.0 liter turbo engine has a far greater cooling capacity and, coupled with technology advances, makes this practice no longer necessary. This explains why information about a cool down is not included in the Impreza Owner’s Manual.
The heat contained in the turbocharger begins to vaporize the coolant at the turbocharger after the engine is stopped. This hot vapor then enters the coolant reservoir tank, which is the highest point of the coolant system.
At the same time the vapor exits the turbocharger, coolant supplied from the right bank cylinder head flows into the turbo. This action reduces the turbocharger temperature. This process will continue until the vaporizing action in the turbocharger has stopped or cooled down.
Back in 1972, Subaru introduced the Leone 4WD Station Wagon. It was the first fourwheel drive vehicle designed specifically for everyday driving, rather than for off-road or rugged use.The safety and driving performance aspects of the Leone 4WD proved popular and made the car successful. It quietly set the standard for Subaru to become the global AWD leader of today.
Subaru Symmetrical All-Wheel Drive:
Subaru calls its system of mating a horizontally opposed (boxer) engine to various types of full-time AWD “Symmetrical All-Wheel Drive.” This system is based on the balance of both the powertrain and the straight, nearly-horizontal, flow of power to the wheels.The weight of the flat boxer engine and the transfer components lie very low in the chassis, providing a lower center of gravity, resulting in excellent traction and stability.
The Five Types of Subaru Symmetrical All-Wheel Drive:
Subaru currently uses five different types of Symmetrical AWD. Each is specific to the Subaru model and transmission.The five types are:
■ Continuous All-Wheel Drive
■ Active All-Wheel Drive
■ Variable Torque Distribution (VTD) All-Wheel Drive.
■ Driver Controlled Center Differential (DCCD) All-Wheel Drive
■ Vehicle Dynamics Control (VDC) All-Wheel Drive
The Environmental Protection Agency (EPA) now has regulations in place that establish requirements for on-board diagnostic (OBD-II) systems on light-duty vehicles and light-duty trucks. The purpose of the OBD-II system is to ensure proper emission control system operation for the vehicle’s lifetime by monitoring emission-related components and systems for deterioration and malfunction.
There’s a big difference between detecting only hard faults (OBD-I) and having the ability to actively monitor the system for proper operation, deterioration or a malfunction (OBD-II).
Engines in today’s vehicles are largely electronically controlled. Sensors and actuators sense the operation of specific components (e.g., the oxygen sensor) and actuate others (e.g., the fuel injectors) to maintain optimal engine control. An on-board computer, known as the “powertrain control module,” controls all of these systems.
For those of you who are interested, this is how Subaru breaks down a part number. This could help you guess a part number if one that you found on a part is missing digits or is damaged.
Genuine Part Classification Codes
A = Part Description Code
B = Part Sequential Code
C = Part Category Code
D = Specific Code
E = Modification Code
F = Color Code
Description of Genuine Part Classification Codes
A. Part Description Code: Identifies part name and function. If the first position is an alpha, it identifies an accessory.
B. Part Sequential Code: Sequential number system assigned to the part number by Fuji Engineering Division.
C. Part Category Code: Key position of the part number in determining the logic of the numbering system:
A = Engine and Transmission Parts
K = Engine and Transmission Parts
X = Some Automatic Transmission Parts
G = Body Parts
D. Specific Parts: Identifies specific characteristics of parts with the same part description code and designated sequences from A00. The specific code is assigned by the Fuji Engineering Division for internal use only.
E. Modification Code: Identifies an engineering change to the part. For example:
0 = original
1 = 1st modification
2 = 2nd modification
3 = 3rd modification
F. Part Color Code: Identifies color coded parts for digits 11 and 12. Digit 11 = color and digit 12 = degree.
Code E or F in the 12th digit is for Fuji Heavy Industries (FHI) internal purposes only.
Note: Code E or F in the 12th digit is for Fuji Heavy Industries (FHI) internal purposes only.
For example look at these rare 22B parts with their part numbers.
Since 1996, original equipment manufacturers have been using R-134a in all automotive air conditioning systems. R-134a is now the refrigerant of choice. This short article will help you learn proper safety procedures regarding the use of R-134a. Also, to stress the importance of refrigerant identification for OEM automotive A/C systems, we will explain some of the specific system component changes, and discuss important changes to A/C service equipment.
You may already be familiar with R-134a, A/C retrofits, and proper procedures. If you are confident of your abilities and retrofit knowledge, try answering the 20 question quiz that ends this article. If you are not sure about your R-134a retrofit knowledge, read this article first.
What Is R-134a?
R-134a does not contain suspected ozone-depleting chlorofluorocarbons. The chemical compounds and molecular structures of the old refrigerant R-12 and the new refrigerant R-134a are completely different. However, the temperature/pressure relationships of the two are very similar. Automotive publications, equipment manufacturers, and refrigerant suppliers, provide technical specifications and properties for R-134a.
R-134a and R-12 are not compatible. Under no circumstances should they be mixed. Vehicle and service manufacturers have gone to great lengths to prevent cross-charging or contamination of these two refrigerants. For instance, R-12 systems use a small high-side service port, and a large low-side service port. R-134a service fittings are completely different. The high side service port is now the larger of the two. These quick disconnect fittings will not work with R-12 service equipment.
Subaru vehicles are more reliable than ever before. To assure their continued reliability, a schedule of inspection and maintenance (I & M) services is prescribed by Subaru of America for every Subaru vehicle sold. A copy of this schedule can be found in the Warranty and Maintenance Booklet located in the vehicle glove compartment.
Subaru vehicle maintenance inspections services are divided into recommended intervals beginning with three months or 3000 miles (whichever comes first). Each additional level in the maintenance schedule (7,500/15,000/ 30,000 miles) adds more maintenance and inspection steps to the process. The 15,000 (15 month) and 30,000 mile (30 month) services are ‘major’ services, and include the most comprehensive range of component checks, part replacements and adjustments.
If you are already familiar with Subaru vehicles, you may have developed a routine when performing a vehicle safety maintenance inspections. Following a set routine allows you to start at one end of the vehicle and end up at the other end, having performed all of the necessary safety inspection steps along the way.
Repetition of the safety inspection may also allow you to commit the steps to memory, but a checklist can be a helpful addition that leaves nothing to chance (or memory). Checking items off the checklist provides a written record that can be shared with the customer and retained for your service records as well.
Recommended steps in a Subaru Safety Maintenance Inspections are also spelled out in the owner’s Warranty and Maintenance Booklet. Some of the steps overlap services performed during the scheduled maintenance program. It could be argued that any scheduled maintenance should always include a Safety Inspection. Most of the Safety Maintenance Inspection steps are based on common sense, but it’s surprising how frequently these simple suggestions are ignored.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.